Простой мощный блок питания на 14В 20-25А (9xLM317)

Обсуждаем схемы блоков питания (БП), конструкции и основные принципы наладки. Лабораторные и сетевые блоки питания, миниатюрные источники питания, трансформаторные и бестрансформаторные БП.
Ответить
Аватара пользователя
RadioRobot
У нас в гостях
У нас в гостях
Сообщения: 8
Зарегистрирован: 11 авг 2015, 23:28

Простой мощный блок питания на 14В 20-25А (9xLM317)

Сообщение RadioRobot »

Схема простого в изготовлении блока питания, который обеспечивает на выходе 13.8 В, 25 А. напряжение можно регулировать, а ток увеличить добавив нужное количество каскадов со стабилизаторами LM317.
Приобретение дорогого импортного трансивера, как правило, сопряжено со значительными материальными затратами. Часто средств на покупку блока питания совсем нс остается. И тут перед счастливым радиолюбителем встает проблема самостоятельного изготовления питающего устройства. Каким же требованиям оно должно удовлетворять?

Параметры блока питания:
  • Выходное напряжение - 13,8 В (регулируется)
  • Номинальный ток нагрузки - 25 А
  • Ток защиты от короткого замыкания - 27 А
  • Просадка выходного напряжения при номинальном токе нагрузки - не более 0,5 В
Принципиальная схема блока питания на 14В 20-25А (9xLM317).
Принципиальная схема блока питания на 14В 20-25А (9xLM317).
F1, F2 - предохранитель на 2,5А.
F3, F4 - предохранитель на 25А.
С5 - 100 000 мкФ на 25В.
С6 - 50 мкФ на 25В.
VD1, VD2 - 40HF20 или отечественные мощные диоды с прямым током не менее 30А.

Особое внимание следует уделить изготовлению силового трансформатора. Эта задача почти всегда связана с массой трудностей - надо доставать нужное по размеру железо, провода необходимого сечения и, главное, произвести трудоемкую намотку. Все эти моменты вызывают у радиолюбителей глухое отвращение к самостоятельному изготовлению трансформатора и желание достать уже готовый. Что, в свою очередь, отодвигает момент выхода в эфир на новеньком трансивере в "долгий ящик".

После сборки схема выпрямителя вместе с конденсатором фильтра, производим замеры нагрузочной способности, среднего напряжения и напряжения пульсации при номинальном токе нагрузки. Наибольший интерес вызывает величина напряжения в минимуме периода пульсации. Замеренное осциллографом, оно должно быть нс менее чем на три вольта (мин. запас на стабилизацию) больше выходного напряжения стабилизатора и, в нашем случае, составит 13,8+3=16,8 В.

Немаловажно правильно выбрать емкость конденсатора фильтра. Обычно ее выбирают порядка 100000 мкф. Я испытывал трудности с приобретением такого конденсатора и набрал необходимую емкость, соединяя параллельно имеющиеся конденсаторы. Мне удалось разместить их во всех закоулках корпуса блока, приклеивая конденсаторы клеем "расплав". Выводы одноименных полюсов надо соединить проводами в одной точке, в непосредственной близости от выходного разъема. Можно использовать конденсатор и меньшей емкости, но при этом необходимо несколько увеличить напряжение вторичных обмоток, контролируя напряжение пульсации под нагрузкой, как было описано выше.

Когда сборка трансформатора и выпрямителя была окончательно завершена, передо мной встал соврем непростой вопрос выбора схемы стабилизатора напряжения. С одной стороны, существует масса схем с транзисторами в качестве регулирующего элемента, с другой стороны, соблазнительно было бы использовать стабилизатор полностью в интегральном исполнении. Последний вариант был бы предпочтителен и своей технологичностью, и качественными параметрами, гарантированными микросхемой, если бы не цена.

Раньше и сейчас я широко применяю в своих конструкциях микросхемы КР142ЕН12. Всем они хороши - ценой, доступностью и своими параметрами, не боятся короткого замыкания. Только вот ток маловат. Всего около двух с небольшим ампер.

Импортные аналоги наших микросхем LM317T -дешевле, стабильней и мощнее, держат три ампера, но все равно это далеко от того, что необходимо. Еще раньше, для увеличения мощности стабилизаторов я соединял выводы двух таких микросхем параллельно. Максимальный ток увеличивался так же ровно в два раза.

В данном же случае соедининены параллельно целых девять микросхем, равномерно разместив их на общем радиаторе. По стандартной схеме присоединил два резистора к общему управляющему выводу и включил немудреную схему. Результаты испытаний под нагрузкой полностью оправдали мои предположения - отличные стабилизирующие свойства схемы сохранились такими же, как у отдельной микросхемы, а максимальный ток увеличился пропорционально их числу.

Используемые в стабилизаторе микросхемы перед монтажом следует испытать по отдельности. Выходные напряжения каждой микросхемы могут отличаться на небольшую величину. Но я намеренно не стремился выбирать экземпляры с одинаковыми параметрами, рассуждая следующим образом - пускай, при токе, предположим, два ампера работает всего одна из девяти микросхем.

Зато когда ток увеличится до величины больше трех ампер, нагруженный чип почувствует перегрузку. В нем начнет срабатывать внутренняя схема защиты от короткого замыкания, то есть плавно увеличится его внутреннее сопротивление, и протекающий ток перераспределится на следующую микросхему. Так будет продолжаться пока все микросхемы не включатся в процесс стабилизации напряжения.

При дальнейшем увеличении тока выше номинального будет наблюдаться быстрое уменьшение выходного напряжения - окончательно сработает функция защиты от перегрузки. Такая схема, кроме предельной простоты и минимума используемых элементов, имеет еще одно преимущество - лучшую теплоотдачу распределенных по радиатору микросхем.

В моей конструкции использовались три игольчатых радиатора от строчной развертки телевизоров "Электроника 401", укрепленные на общем алюминиевом основании. Под радиаторами на всякий случай смонтирован охлаждающий вентилятор, правда, включать его не приходится - температура теплоотвода даже при интенсивной работе на передачу невысока.

Регулировка выходного напряжения такой схемы может осуществляться в очень широком диапазоне - от двух до нескольких десятков вольт. В таблице приведены усредненные величины сопротивления регулировочного резистора (переменный резистор 3,3 кОм), в зависимости от требуемого выходного напряжения.

Радиатор с микросхемами должен обязательно быть изолирован от корпуса блока питания. Сам корпус лучше не соединять гальванически со схемой стабилизатора, а присоединить к защитному заземлению. На входе сетевого напряжения желательно установить простой LC фильтр. Он защитит трансивер от попадания сетевых помех.

Индикация работы блока питания производится двумя лампами HL1- любая неоновая, HL2 - лампа накаливания. Она также выполняет роль разрядного резистора. По длительности ее свечения после выключения блока из сети можно судить о качестве конденсатора С5, а по яркости - о стабильности выходного напряжения.
Источник: "Радио -Дизайн", 1998 №2.

Ответить

Вернуться в «Блоки питания»